Инфракрасная паяльная станция своими руками. Паяльная станция на Arduino простым языком Самодельный паяльный фен на arduino

Очень часто заядлые радиолюбители сталкиваются с такой проблемой, как паяльники, которые не соответствуют их требованиям, или просто-напросто перегорают в процессе работы. К тому же, жало паяльника не всегда подходит для микро работ, и требует внесения корректировок в свой диаметр.

Как сделать паяльный фен своими руками: описание прибора

На сегодняшний день положение с паяльниками, имеющимися в продаже, просто катастрофическое. Хорошие, качественные паяльники стоят дорого, а китайские дешевые перегорают во время первого дня использования.

Для того, чтобы не выбрасывать на ветер лишние деньги, можно попытаться смастерить паяльную станцию самому.

Фен для пайки похож на обычное бытовое изделие, которым принято сушить волосы. Основным отличием его можно назвать лишь рабочую температуру. Именно благодаря мощности, которая в намного больше именно у паяльного фена, при помощи этого изделия имеется возможность паять разные радиодетали. А также, с применением этого предмета можно собирать схемы.

Краткое описание прибора для начинающих:

  • Паяльный термофен представляет собой удобный универсальный электроприбор, представляющий возможность за небольшой промежуток времени нагреть детали из металла;
  • Благодаря хорошей сборке и простоте использования паяльный фен отлично подходит профессионалам и новичкам.
  • Данный прибор очень редко применяют отдельно, из-за того, что при выполнении ремонтных работ довольно важным есть еще и точное направление потока горячего воздуха.


Именно из-за этого специалисты охотно используют в основном паяльные станции. Другими словами, данное полупрофессиональное нагревательное оборудование, включающее в себя сварочный нагревательный элемент и удобный паяльник, отлично подходит для пайки мелких деталей. Такая крутая современная паяльная станция как нельзя лучше подходит для кропотливой работы с блоками электросхем и сетей. Иногда благодаря такому прибору вы можете сделать термообработку элементов маленького размера. Однако, нужно знать, что каждая модель, которая называется паяльным феном индивидуальна по своим техническим параметрам, имеет диаметр сопла от 2 до 6 мм. мощность в пределах 500 ватт; максимальную производительность вентилятора до 32 литров в минуту; а рабочую температура до 550 градусов.

Самодельная аналоговая паяльная станция на arduino

Простыми паяльниками в работе пользуются в основном лишь начинающие радиолюбители. Те, кто профессионально занимается ремонтом техники, или кому просто часто приходится совершать паяния, покупают специальные универсальные паяльные станции. Но хороший паяльный агрегат в наши дни стоит дорого, а китайский ширпотреб служит совсем не долго.

Выход из ситуации – создать в домашних условиях на базе Arduino-модуля простую паяльную станцию, которая будет безотказно работать, выполняя любые задания мастера. Схема и чертежи этой самоделки довольно просты.

В ней присутствуют следующие детали:

  • Оснащен термопарой;
  • Присутствует LCD дисплей;
  • Регулятор мощности;
  • Система поддержки температуры паяльного жала на необходимом для работы уровне.

Для изготовления паяльной станции на основе ардуино вам понадобятся следующие детали: тороидальный трансформатор, симистор, выпрямитель диодный, Arduino Pro Mini, микросхема MAX6675, конденсатор, резисторы, потенциометр 51К, компрессор.

Индукционная паяльная станция своими руками 220 вольт: принцип работы и преимущества

Контактный метод нагрева паяльного жала отходит в прошлое. Он используется в классических схемах универсальных паяльных станций, но несовершенен. Это можно заметить по низкому КПД, с высокой потребляемой мощностью , локальному перегреву жала на участке контакта и другим несоответствиям

Паяльная индукционная станция исключает такие недостатки. При поступлении высокочастотного напряжения в индукционную катушку происходит формирование обычного переменного магнитного поля. Так, как внешний слой жала выполнен из натурального ферромагнитного материала, в процессе работы начинается процесс перемагничивания элемента, который сопровождается вихревыми токами. Это приводит к ощутимому выделению энергии тепла.


Преимущества простого индукционного паяльного метода следующие:

  • Нагрев жала в паяльнике происходит равномерно, поскольку оно выступает как нагревательный элемента.
  • Отсутствуют потери, связанные с температурной инерцией;
  • Полностью исключается локальный перегрев конструкции, вызывающий выгорание и окисление жала;
  • Увеличивается срок эксплуатации агрегата и повышается КПД.

Станции, оборудованные термодатчиком, существенно дешевле, чем обычные, что делает их доступными и для профессионалов, и любителей. Точность, практичность и надежность данного оборудования прямо зависят от цифрового управленческого блока.

Простая паяльная станция: материалы для изготовления жала

Главным преимуществом самодельной паяльной станции является ее более низкая, чем у приобретенной на рынке стоимость. К тому же, изготавливая паяльник и наконечник к нему, вы можете сделать их такими, как нужно именно вам. Ведь только вы знаете, какие приборы вам приходится ремонтировать чаще всего, и какие жала пригодятся чаще.

Для изготовления жала для паяльника вам понадобятся следующие инструменты и материалы:

  • Планшетки и метчики для нарезки резьбы;
  • Мелкий и грубый напильники;
  • Точилка ножевая небольшого диаметра;;
  • Зажимные клещи или настольные тиски;
  • Небольшой молоток;
  • Плоскогубцы в количестве 2х штук;
  • Паяльник без жала;
  • Деревянная киянка;
  • Линейка;
  • Ножовка по металлу с новым полотном;
  • Набор старых отверток;
  • Плотные перчатки;
  • Кусок медной трубки 8 мм в диаметре;
  • Одножильный медный провод диаметром 4 мм.

Первым делом вам нужно убедиться в том, что разровнены все погнутые участки на трубке и устранены любые неровности. Порежьте трубку на заготовки, корректируя длину ножовкой или труборезом. При данных манипуляциях защищайте свои руки специальными перчатками.

Изготавливаем паяльник для паяльной станции: этапы работ

Для того, чтобы удобно было работать, отрежьте кусок проволоки, длиною 16-25 см. После чего переходим к изготовлению кожуха. Для этого берем отрезки трубки 25х8 мм и наносим отметки через каждые 25 мм.


Для кожухов специалисты советуют использовать обрезки трубочек, длиной 2,5 см и 8 мм в диаметре (5/16 дюймов). Аккуратно отмеряем отрезки необходимой длинны, нанесём отметины на каждом участке после 2,5 см (гвоздём или же ножовочным острым полотном. Используя ножовку отпиливаем трубки по отметке. Делать это нужно аккуратно, так, чтобы работа была выполнена безупречно.

Как только вы отпилите верхний кожух, придется начать процесс удаления мелких металлических «лохмотьев», которые попали внутрь трубки при пилении. Отвёрткой нужно зачистить место среза, время от времени прокручивая её и проверяя внутрянку трубки. Не забывайте о том, что расширять отверстия при этом не нужно. После зачистки трубки возьмите паяльник, и проденьте его в кожух. Входить он должен идеально, так, как будто у вас в руках оригинальное жало. Добившись успешной примерки, обработайте кожух напильником, при этом сгладив края. Однако не нужно переусердствовать. Вовсе ни к чему вам сейчас сточить лишний кусочек материала.

  1. Из медного или латунного прутика изготавливаем «жало»;
  2. Нарезаем на жале и кожухе резьбу;
  3. Зачищаем и соединяем жало и резьбу;
  4. Изделия полируем и покрываем никелем.

Никелировав жала своего паяльника, вы не только сможете улучшить их внешний вид, но и продлите срок службы изделия. Никель сможет защитить медные жала от коррозии в последующем, и позволит избежать наплавлений олова.

Как сделать паяльник своими руками (видео)

На современном рынке паяльные nano-станции представлены такими моделями, как Энкодер и Atmega 8, однако цена на них довольно высока. Изготовив паяльную лампу для собственных нужд своими руками вы сможете не только сэкономить средства, но и сделаете такой инфракрасный прибор, который будет служить вам очень долго и преданно. Так же, для паяния самостоятельно можно изготовить токопроводящий газовый клей или пасту.

Чтобы проще было понимать процесс построения паяльной станции, надо понимать функциональное назначение основных составляющих элементов.

Ардуино

Этот процессор, установленный на небольшой печатной плате, имеет определенный объем памяти. По периметру платы сделаны отверстия, и установлены контактные панели для подключения самых разнообразных электротехнических элементов. Это могут быть светодиоды, датчики различной конструкции и назначения, реле, электромагнитные замки и многое другое, что работает от электропитания и управляется электрическими сигналами. В нашем случае это будет паяльная станция, собранная на Ардуино.

Особенность процессора Ардуино в том, что он легко программируется для управления подключенными устройствами по установленному алгоритму. Это позволяет самостоятельно конструировать автоматические системы управления бытовой электротехникой и другими электротехническими элементами.

Паяльник

Для работы с печатными платами электронных схем большим спросом у потребителей пользуются модели паяльников Мосфет, китайского производства с ручками серии 907 A1322 939, они недорогие, надежные и удобные.

Характеристики:

  • Напряжение питания – 24В, ток постоянный (DC);
  • Мощность – 50Вт;
  • Рабочая температура для пайки – 200-400 ̊С.

В этом режиме прогрева и поддержания температуры устройства управления будут коммутировать ток величиной 2-3 А, но для этого требуется соответствующий блок питания.

Особенности выбора паяльника

Обратите внимание! Некоторые конструкции паяльника в качестве термодатчика имеют термопару, такие варианты не подходят, должен стоять термистор (сопротивление). Надо внимательно читать техническую документацию и при покупке проконсультироваться у продавцов.

В разъеме паяльника 5 проводов:

  • Два – подключаются к нагревательному элементу;
  • Два – к термодатчику;
  • Один контактирует с наконечником и выходит на заземление, одновременно проводник выполняет роль нейтрализации статического напряжения.

Определить назначение проводов можно мультиметром, измеряя сопротивление между проводами от термодатчика 45-60 Ом. Сопротивление нагревательного элемента несколько Ом. Таким способом можно отличить термопару от датчика и нагревающего элемента, ее сопротивление несколько Ом и при измерении, если поменять щупы местами, показания будут отличаться. Последние модели стандартизированы обычно: красный-белый – провода датчика, черный и синий – от нагревателя, зеленый – заземление. Ответная часть к разъему шнура паяльника поставляется в комплекте, при необходимости обе составляющие разъема продаются в магазинах радиодеталей.

Блок питания

Некоторые умельцы используют блоки питания от ПК, на 12В используют адаптеры для повышения напряжения до 24В. В этих случаях схема управления работает нормально, но бывают проблемы долгого нагревания по причине слабого тока.

Надежнее использовать промышленные изделия, идеально подходит 24V 60Вт Venom Standart, который обеспечивает ток для нагрузки в 2,5 А. Он имеет небольшие габариты и прочный корпус из металлической пластины, легко монтируется в общий корпус для паяльной станции с Ардуино.

Схема подключения

Многими мастерами широко используется проверенная надежная схема Flex Link. Она относительно простая и имеет доступные элементы, начинающие любители в состоянии собрать своими руками такую схему.

Кроме схемы Ардуино (UNO ), блока питания и паяльника, в составе общей схемы понадобятся еще некоторые элементы:

  • Операционный усилитель LM358N для снятия показаний с датчика температуры на паяльнике. Не вдаваясь в теоретические подробности, для согласования его работы с платой Ардуино в схему включаются 2 конденсатора по 0.1 мкф, 3 сопротивления: 10; 1; 13 кОм;
  • Для управления включением и выключением питания на паяльнике, в зависимости от сигналов с датчика температуры, используется импульсный транзистор IRFZ44, подключенный через сопротивления 1к и 100Ом к плате Ардуино;

  • Блок питания в 24В рассчитан для нагрева паяльника, для питания схемы Ардуино и LM358N требуется +5В. Это напряжение обеспечивает стабилизатор напряжения 24/5В, подключенный к основному блоку питания

Есть несколько вариантов запитать Ардуино и отдельные элементы схемы, на выходе стабилизатора можно установить 5В и подать на вход Ардуино через USB.

Другой вариант – установить на выходе 12В и подать через классический цилиндрический разъем. 5 вольт для схемы можно взять со встроенного в Ардуино стабилизатора.

Плата Ардуидо в нашем случае используется как контроллер, кнопки управления подключаются от питания +5В через сопротивления 10кОм. Трехразрядный (в каждом разряде по 7 сегментов) светодиодный индикатор позволяет наглядно отслеживать температуру паяльника.

Важно! При подключении индикатора к плате надо обязательно разобраться с его характеристиками, производители делают разные модели. Важно, какие токи выдерживает светодиод сегмента, и какой вывод какому сегменту соответствует. От правильности понимания конструкции зависит удачная распиновка контактов.

В нашем случае сегменты подключаются через сопротивления 100Ом, распиновка контактов происходит по следующей последовательности:

Аноды :

  • D0 – a;
  • D1 – b;
  • D2 – c;
  • D3 – d;
  • D4 – e;
  • D5 – f;
  • D6 – g;
  • D7 – dp.

Катоды:

  • D8 – cathode 3;
  • D9 – cathode 2;
  • D10 – cathode 1.

Для упрощения кнопки подключаются на аналоговый контакт А3, А2, и память и скорость процессора достаточны, чтобы отметить это в программе. На плате Ардуино UNO любителям, не имеющим достаточного практического опыта, тяжело определить цифровые пины: 14, 15, 16.

Для того чтобы нагревательный элемент не перегревался на максимально допустимой температуре, схема должна автоматически управлять процессом подогрева в режиме ШИМ модуляции. На начальном этапе включается 24В на полную мощность для скорейшего достижения установленной температуры. После достижения заданной величины температуры мощность понижается до 30-45 % при минимальном отклонении. Например, на 10 ̊С от установленной температуры – паяльник будет отключаться или включаться в зависимости больше или меньше температура от установленной, такой режим позволяет использовать 30-35 % мощности для поддержания паяльной станции в рабочем режиме, снимается инерция перегрева.

Для поддержания схемой такого режима пишется несложная программа, прошивается процессор. Написание программ требует детального рассмотрения в отдельной статье. Когда существуют проблемы, можно обратиться к специалистам, которые для блоков Ардуино за несколько минут напишут программу, задающую алгоритм работы контроллера для паяльной станции. На многих сайтах опубликованы различные варианты использования Ардуино, представлены схемы, варианты печатных плат и программное обеспечение. Можно купить за 1-5 долларов программу, Ардуино с прошитым под заданную схему с определенным алгоритмом процессором и собрать схему самостоятельно. На этом сайте http://cxem.net/programs.php можно заказать изготовление печатной платы, Ардуино с прошитой программой по заказу 5$. На этом сайте делаются расчеты, составляется схема, подбирают все необходимые детали и присылают заказчику комплектом с описанием процесса сборки. Как конструктор сделай сам, заказчик имеет возможность оценить свои способности, выбрать, что сделает своими руками, что купит и соберет станцию самостоятельно.

Особенности монтажа и проверки работы схемы

Особенность этого варианта в том, что паяльная станция на Ардуино делается на отдельных блоках. Печатные платы (блоки) легко размещаются в общем корпусе, отдельные элементы, как светодиодный индикатор, разъем для подключения паяльника, кнопки выводятся на лицевую панель.

На отдельной плате можно разместить дополнительные элементы, транзистор IRFZ44, операционный усилитель LM358N, со всеми конденсаторами, сопротивлениями и разъемом для включения паяльника. Все соединения между блоками сделать по схеме через разъемы.

На данном примере рассмотрен конкретный вариант сборки с определенными элементами. Существуют различные блоки питания, стабилизаторы, Ардуино, индикаторы и другие элементы, при сборке обязательно надо учитывать совместимость параметров изменения в распиновке и программировании. Но общий алгоритм подборки элементов и проверки и написания программы управления остается прежним.

Видео

В этой статье я хочу рассказать о своей версии паяльной станции выполненной на базе микросхемы ATmega328p, которая используется в arduino UNO. За основу был взят проект с сайта http://d-serviss.lv. В отличии от оригинала дисплей подключил по протоколу i 2 c: во-первых он у меня был, заказывал несколько штук на AliExpress для других проектов, во-вторых осталось больше свободных ножек МК, которые можно использовать для каких-либо других функций. Фото дисплея с переходником на протокол i 2 c ниже.

Температура паяльника, фена и обороты куллера регулируются энкодерами:

Включение и выключение паяльника и фена происходит нажатием на энкодер, причём после выключения в память МК сохраняются температура паяльника, фена и обороты куллера.

После выключения паяльника или фена в соответствующей строке отображаются температура, вплоть до остывания до 50 0 С. После выключения фена, кулер охлаждает его до 50 0 С на 10% оборотах, что делает его почти бесшумным в выключенном состоянии.

Для питания схемы на aliexpress был приобретён импульсный блок питания на 24в и 9А, как в последствии понял, слишком мощный. Стоит поискать с выходным током 2-3 А – этого более чем достаточно, он будет дешевле, да и места в корпусе будет занимать меньше.

Для питания схемы использовал DC-DC преобразователь на LM2596S, подключаем его к 24в и выставляем построечным резистором 5 вольт.

Паяльник и фен также приобрёл на aliexpress , ВАЖНО выбрать их на термопаре, а не на терморезисторе. Фен выбрал от станций 858, 858D, 878A, 878D и 878D, паяльник от станций 852D +, 853D, 878AD, 898D, 936B, 937D. Если брать на терморезисторе то схему и прошивку необходимо доработать. К паяльнику прикупил комплект из 5 жал. Паяльник попался бракованный, был перебит где-то внутри провод. Пришлось менять, хорошо подошел провод от USB удлинителя.

Так же понадобятся дополнительно разъёмы GX16-5 и GX16-8, для подключения паяльника и фена к корпусу прибора.

Теперь корпус: с проблемой выбора корпуса я провёл много времени, сначала использовал от компьютерного блока питания металлический, но в последствии отказался от него, т.к. были помехи от ИБП, из-за которых зависал МК и LCD. Пробовал экранировать БП, основную плату и дисплей. МК перестал зависать а вот дисплей так и показывал периодически непонятные иероглифы. Решил использовать корпус из пластмассы, все проблемы с помехами сразу прошли, ничего не экранировал. Корпус решил так же приобрести у китайцев. Немного погорячился с размерами и взял как оказался очень маленький (150 мм x 120 мм x 40 мм), туда я конечно всё уместил, сделал специально плату под него, но вот на лицевой панели всё оказалось слишком компактно, и регулировать особенно фен не очень удобно.

Доработанная схема и печатная плата ниже на картинке, от оригинала она отличается подключением дисплея, заменой переменных резисторов и кнопок включения на энкодеры. Так же на схеме я убрал стабилизатор на 12 вольт, т.к. фен у меня работает от 24в, и убрал стабилизатор на 5 вольт, заменив его DC-DC преобразователем.

Печатная плата делалась классическом способом – , лудил сплавом розе в растворе лимонной кислоты.

Симистор поставил на небольшой радиатор, силовые мосфеты без радиатора, т.к. за ними нагрева не замечено. Штырьки пришлось выпаять из-за плохого контакта, провода припаял непосредственно к плате. Переменные резисторы рекомендую использовать многооборотные для более плавной настройки температуры.

Микроконтроллер прошивал через Arduino UNO, МК подключаем по классической схеме: 1 вывод МК к 10 выводу Arduino, 11 вывод МК к 11 выводу Arduino, 12 вывод МК к 12 выводу Arduino, 13 вывод МК к 13 выводу Arduino, 7 и 20 выводы к +5 вольтам, 8 и 22 к GND, к 9 и 10 подключаем кварц на 16 МГц. Схема подключения ниже.

Схема подключения

Осталось запрограммировать МК.

1) Заходим на сайт https://www.arduino.cc/en/main/software , выбрав свою ОС скачиваем программу ARDUINO IDE, после чего устанавливаем её.

2) После установки необходимо добавить библиотеки из архива, для этого в программе выбираем Скетч – Подключить библиотеку – Добавить.ZIP библиотеку. И подключаем по очереди все библиотеки.

3) Подключаем Arduino UNO и присоединённый к ней МК к компьютеру через USB, при первом включении установятся необходимые драйвера.

4) Заходим в программе Файл – Примеры – ArduinoISP – ArduinoISP, в пункте Инструменты выбираем нашу плату и виртуальный порт, к которому подключилась ардуино, затем нажимаем загрузить. Этими действиями мы превращаем нашу ардуино в полноценный программатор.

5) После загрузки скетча в ардуино открываем скетч из архива, выбираем пункт Инструменты – записать загрузчик. Сам загрузчик в МК нам конечно не нужен, но этимы действиями в МК прошьются фьюзы и наша микроконтроллер будет работать от внешнего кварца на частоте 16МГц.

Сегодня я постараюсь рассказать вам о проекте нашего товарища , которым лично я с удовольствием пользуюсь и по сей день — это Паяльная станция с феном и паяльником на контроллере Ардуино. Сам не очень разбираюсь в радиоэлектронике, но основные понятия имею, поэтому буду рассказывать скорее с точки зрения обывателя а не профессионала, тем более что самому автору пока рассказать подробно об этом проекте некогда.

Назначение устройства и органы управления

Основное назначение — это удобная и качественная пайка на паяльной станции при помощи паяльника и фена. Включаются и выключаются фен и паяльник отдельными кнопками, и могут работать одновременно.

Главное отличие нашего паяльника (и фена) от обычного — это постоянный контроль температуры! Если я задал температуру в 300 градусов, то на жале паяльника будет поддерживаться именно эта температура с самыми небольшими отклонениями. Этот паяльник не нужно регулярно вынимать из розетки, как обычный, и не нужно снова вставлять в розетку когда он остыл. Той же функцией обладает и фен.

Станция снабжена ЖК-экраном на котором отображается заданная температура для паяльника и фена, а также текущая измеряемая температура на этих устройствах. При наблюдении за этими показаниями можно заметить, что измеряемая температура постоянно стремится к заданной и отклоняется от неё только на доли секунд и на считанные градусы. Исключение — момент включения, когда устройство только нагревается.

Кроме кнопок включения и экрана, на внешней панели станции есть ещё три ручки потенциометров. Ими можно задать температуру паяльника и фена, а также скорость вращения вентилятора фена. Температура измеряется в градусах цельсия, а скорость фена в процентах. При этом 0% — это не выключенный вентилятор, а просто минимальная скорость.

Фен снабжён защитной функцией продувки. Если вы пользовались феном и выключили его кнопкой, то нагревательный элемент фена выключится, а его вентилятор продолжит вращаться, продувая фен, до тех пор, пока его температура не понизится до безопасных 70 градусов. Чтобы фен не вышел из строя, не выключайте станцию из розетки до окончания продувки.

Устройство и принцип действия

Основой устройства я считаю печатную плату разработки и изготовления товарища Kamik. В центре этой платы расположилась колодка, в которую установлен контроллер Arduino Nano V3. Контроллер подаёт сигналы на три MOSFET-транзистора, которые плавно управляют тремя нагрузками: Нагревательные элементы паяльника и фена, а также вентилятор фена. Также на плате есть подстроечные резисторы для настройки термопар паяльника и фена, а также множество колодок и разьёмов для подключения фена и паяльника (через разьёмы GX-16), экран, кнопки включения фена и паяльника и потенциометров. Также прямо на плату приклеен понижающий модуль LM2596 для понижения напряжения с 24в до 5вольт с целью питания самой ардуины и ЖК-экрана. Вентилятор и нагреватель фена работают от напряжения 220в, паяльник — от 24в. Для питания паяльника присутствует отдельный блок питания 220в->24в, заказывался из китая. Пятивольтовые потребители питаются от понижайки LM2596.

Фен и паяльник присоединяются к паяльной станции при помощи разьёмов GX16 с восемью и пятью контактами соответственно. Для присоединения шнура питания 220в предусмотрено специальное гнездо со встроенным выключателем и предохранителем.

Список деталей, стоимость

Мы с товарищами решили собрать сразу несколько таких паяльных станций, поэтому на некоторых деталях из Китая нам удалось сэкономить за счёт мелкооптовых партий: мы специально искали лоты где нужные нам детали продаются по 5 штук а в некоторых случаях (например потенциометры) — и по 20шт. В результате, себестоимость одной станции (без корпуса) составила около 40$ .

Поделиться