Кпд реальной тепловой машины. Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей. Пример решения задач

Рабочее тело, получая некоторое количество теплоты Q 1 от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q 1 - |Q 2 |. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПДкак можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть?
Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

Цикл Карно.

Допустим, что газ находится в цилиндре, стенки и поршень которого сделаны из теплоизоляционного материала, а дно - из материала с высокой теплопроводностью. Объем, занимаемый газом, равен V 1 .

Рисунок 2

Приведем цилиндр в контакт с нагревателем (Рисунок 2) и предоставим газу возможность изотермически расширяться и совершать работу. Газ получает при этом от нагревателя некоторое количество теплоты Q 1 . Этот процесс графически изображается изотермой (кривая АВ ).

Рисунок 3

Когда объем газа становится равным некоторому значению V 1 ’< V 2 , дно цилиндра изолируют от нагревателя, после этого газ расширяется адиабатно до объема V 2 , соответствующего максимально возможному ходу поршня в цилиндре (адиабата ВС ). При этом газ охлаждается до температуры T 2 < T 1 .
Теперь охлажденный газ можно изотермически сжимать при температуре Т2. Для этого его нужно привести в контакт с телом, имеющим ту же температуру Т 2 , т. е. с холодильником, и сжать газ внешней силой. Однако в этом процессе газ не вернется в первоначальное состояние - температура его будет все время ниже чем Т 1 .
Поэтому изотермическое сжатие доводят до некоторого промежуточного объема V 2 ’>V 1 (изотермаCD ). При этом газ отдает холодильнику некоторое количество теплоты Q 2 , равное совершаемой над ним работе сжатия. После этого газ сжимается адиабатно до объема V 1 , при этом его температура повышается до Т 1 (адиабата DA ). Теперь газ вернулся в первоначальное состояние, при котором объем его равен V 1 , температура - T 1 , давление - p 1 ,и цикл можно повторить вновь.

Итак, на участке ABC газ совершает работу (А > 0), а на участке CDA работа совершается над газом (А < 0). На участках ВС и AD работа совершается только за счет изменения внутренней энергии газа. Поскольку изменение внутренней энергии UBC = – UDA , то и работы при адиабатных процессах равны: АВС = –АDA. Следовательно, полная работа, совершаемая за цикл, определяется разностью работ, совершаемых при изотермических процессах (участки АВ иCD ). Численно эта работа равна площади фигуры, ограниченной кривой цикла ABCD .
В полезную работу фактически преобразуется только часть количества теплоты QT, полученной от нагревателя, равная QT 1 – |QT 2 |. Итак, в цикле Карно полезная работа A = QT 1 – |QT 2 |.
Максимальный коэффициент полезного действия идеального цикла, как показал С. Карно, может быть выражен через температуру нагревателя (Т 1) и холодильника (Т 2):

В реальных двигателях не удается осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД цикла, осуществляемого в реальных двигателях, всегда меньше, чем КПД цикла Карно (при одних и тех же температурах нагревателей и холодильников):

Из формулы видно, что КПД двигателей тем больше, чем выше температура нагревателя и чем ниже температура холодильника.

Карно Никола Леонар Сади (1796-1832гг.) - талантливый французский инженер и физик, один из основателей термодинамики. В своем труде «Размышление о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.) впервые показал, что тепловые двигатели могут совершать работу лишь в процессе перехода теплоты от горячего тела к холодному. Карно придумал идеальную тепловую машину, вычислил коэффициент полезного действия идеальной машины и доказал, что этот коэффициент является максимально возможным для любого реального теплового двигателя.
Как вспомогательное средство для своих исследований Карно в 1824 году изобрёл (на бумаге) идеальную тепловую машину с идеальным газом в качестве рабочего тела. Важная роль двигателя Карно заключается не только в его возможном практическом применении, но и в том, что он позволяет объяснить принципы действия тепловых машин вообще; не менее важно и то, что Карно с помощью своего двигателя удалось внести существенный вклад в обоснование и осмысление второго начала термодинамики. Все процессы в машине Карно рассматриваются как равновесные (обратимые). Обратимый процесс – это такой процесс, который протекает настолько медленно, что его можно рассматривать как последовательный переход от одного равновесного состояния к другому и т. д., причём весь этот процесс можно провести в обратном направлении без изменения совершённой работы и переданного количества теплоты. (Заметим, что все реальные процессы необратимы) В машине осуществляется круговой процесс или цикл, при котором система после ряда преобразований возвращается в исходное состояние. Цикл Карно состоит из двух изотерм и двух адиабат. Кривые A - B и C - D - это изотермы, а B - C и D - A - адиабаты. Сначала газ расширяется изотермически при температуре T 1 . При этом он получает от нагревателя количество теплоты Q 1 . Затем он расширяется адиабатно и не обменивается теплотой с окружающими телами. Далее следует изотермическое сжатие газа при температуре Т 2 . Газ отдает в этом процессе холодильнику количество теплоты Q 2 . Наконец газ сжимается адиабатно и возвращается в начальное состояние. При изотермическом расширении газ совершает работу A" 1 >0, равную количеству теплоты Q 1 . При адиабатном расширении B - C положительная работа А" 3 равна уменьшению внутренней энергии при охлаждении газа от температуры Т 1 до температуры Т 2: A" 3 =-dU 1.2 =U(T 1)-U(Т 2). Изотермическое сжатие при температуре Т 2 требует совершения над газом работы А 2 . Газ совершает соответственно отрицательную работу А" 2 = -A 2 = Q 2 . Наконец, адиабатное сжатие требует совершения над газом работы А 4 = dU 2.1 . Работа самого газа А" 4 = -А 4 = -dU 2.1 = U(T 2)-U(Т 1). Поэтому суммарная работа газа при двух адиабатных процессах равна нулю. За цикл газ совершает работу А"=A" 1 +А" 2 =Q 1 +Q 2 =|Q 1 |-|Q 2 |. Эта работа численно равна площади фигуры, ограниченной кривой цикла Для вычисления коэффициента полезного действия нужно вычислить работы при изотермических процессах A - B и C - D. Расчеты приводят к следующему результату: (2) Коэффициент полезного действия тепловой машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя. Главное значение полученной Карно формулы (2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины. Карно доказал следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т 1 и холодильником температуры Т 2 , не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины. КПД реальных тепловых машин Формула (2) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, КПД равно 1. В реальных тепловых двигателях процессы протекают настолько быстро, что уменьшение и увеличение внутренней энергии рабочего вещества при изменении его объема не успевает компенсироваться притоком энергии от нагревателя и отдачей энергии холодильнику. Поэтому изотермические про цессы не могут быть реализованы. То же относится и к строго адиабатным процессам, так как в природе нет идеальных теплоизоляторов. Осуществляемые в реальных тепловых двигателях циклы состоят из двух изохор и двух адиабат (в цикле Отто), из двух адиабат, изобары и изохоры (в цикле Дизеля), из двух адиабат и двух изобар (в газовой турбине) и др. При этом следует иметь в виду, что эти циклы могут также быть идеальными, как и цикл Карно. Но для этого необходимо, чтобы температуры нагревателя и холодильника были не постоянными, как в цикле Карно, а менялись бы точно так же, как меняется температура рабочего вещества в процессах изохорного нагрева и охлаждения. Другими словами, рабочее вещество должно контактироваться с бесконечно большим числом нагревателей и холодильников - только в этом случае на изохорах будет равновесная теплопередача. Разумеется, в циклах реальных тепловых двигателей процессы являются неравновесными, вследствие чего КПД реальных тепловых двигателей при одном и том же температурном интервале значительно меньше КПД цикла Карно. Вместе с тем выражение (2) играет огромную роль в термодинамике и является своеобразным «маяком», указывающим пути повышения КПД реальных тепловых двигателей.
В цикле Отто сначала происходит всасывание в цилиндр рабочей смеси 1-2, затем адиабатное сжатие 2-3 и после ее изохорного сгорании 3-4, сопровождаемого возрастанием температуры и давления продуктов сгорания, происходит их адиабатное расширение 4-5, затем изохорное падение давления 5-2 и изобарное выталкивание поршнем отработанных газов 2-1. Поскольку на изохорах работа не совершается, а работа при всасывании рабочей смеси и выталкивании отработавших газов равна и противоположна по знаку, то полезная работа за один цикл равна разности работ на адиабатах расширения и сжатия и графически изображается площадью цикла.
Сравнивая КПД реального теплового двигателя с КПД цикла Карно, нужно отметить, что в выражении (2) температура Т 2 в исключительных случаях может совпадать с температурой окружающей среды, которую мы принимаем за холодильник, в общем же случае она превышает температуру среды. Так, например, в двигателях внутреннего сгорания под Т 2 следует понимать температуру отработавших газов, а не температуру среды, в которую производится выхлоп.
На рисунке изображен цикл четырехтактного двигателя внутреннего сгорания с изобарным сгоранием (цикл Дизеля). В отличие от предыдущего цикла на участке 1-2 всасывается. атмосферный воздух, который подвергается на участке 2-3 адиабатному сжатию до 3 10 6 -3 10 5 Па. Впрыскиваемое жидкое топливо воспламеняется в среде сильно сжатого, а значит, нагретого воздуха и изобарно сгорает 3-4, а затем происходит адиабатное расширение продуктов сгорании 4-5. Остальные процессы 5-2 и 2-1 протекают так же, как и в предыдущем цикле. Следует помнить, что в двигателях внутреннего сгорания циклы являются условно замкнутыми, так как перед каждым циклом цилиндр заполняется определенной массой рабочего вещества, которая по окончании цикла выбрасывается из цилиндра.
Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится. Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 = 800 К и T 2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно: Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания. Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения где T 1 - абсолютная температура нагревателя, а Т 2 - абсолютная температура холодильника. Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая техническая задача.

Неравенство Клаузиуса

(1854): Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты), неположительно.

Подведённое количество теплоты, квазистатически полученное системой, не зависит от пути перехода (определяется лишь начальным и конечным состояниями системы) - для квазистатических процессов неравенство Клаузиуса обращается в равенство .

Энтропия, функция состояния S термодинамической системы, изменение которой dS для бесконечно малого обратимого изменения состояния системы равно отношению количества теплоты полученного системой в этом процессе (или отнятого от системы), к абсолютной температуре Т:

Величина dS является полным дифференциалом, т.е. ее интегрирование по любому произвольно выбранному пути дает разность между значениями энтропии в начальном (А) и конечном (В) состояниях:

Теплота не является функцией состояния, поэтому интеграл от δQ зависит от выбранного пути перехода между состояниями А и В. Энтропия измеряется в Дж/(моль·град).

Понятие энтропии как функции состояния системы постулируется вторым началом термодинамики , которое выражает через энтропию различие между необратимыми и обратимыми процессами . Для первых dS>δQ/T для вторых dS=δQ/T.

Энтропия как функция внутренней энергии U системы, объема V и числа молей n i i -го компонента представляет собой характеристическую функцию (см. Термодинамические потенциалы ). Это является следствием первого и второго начал термодинамики и записывается уравнением:

где р - давление , μ i - химический потенциал i -го компонента. Производные энтропии по естественным переменным U, V и n i равны:

Простые формулы связывают энтропию с теплоемкостями при постоянном давлении С р и постоянном объеме C v :

С помощью энтропии формулируются условия достижения термодинамического равновесия системы при постоянстве ее внутренней энергии, объема и числа молей i -го компонента (изолированная система) и условие устойчивости такого равновесия:

Это означает, что энтропия изолированной системы достигает максимума в состоянии термодинамического равновесия. Самопроизвольные процессы в системе могут протекать только в направлении возрастания энтропии .

Энтропия относится к группе термодинамических функций, называемых функциями Массье-Планка. Другие функции, принадлежащие к этой группе - функция Массье Ф 1 = S - (1/T)U и фцнкция Планка Ф 2 = S - (1/T)U - (p/T)V , могут быть получены в результате применения к энтропии преобразования Лежандра.

Согласно третьему началу термодинамики (см. Тепловая теорема ), изменение энтропии в обратимой химической реакции между веществами в конденсированном состоянии стремится к нулю при T →0:

Постулат Планка (альтернативная формулировка тепловой теоремы) устанавливает, что энтропия любого химического соединения в конденсированном состоянии при абсолютном нуле температуры является условно нулевой и может быть принята за начало отсчета при определении абсолютного значения энтропии вещества при любой температуре. Уравнения (1) и (2) определяют энтропию с точностью до постоянного слагаемого.

В химической термодинамике широко используют следующие понятия: стандартная энтропия S 0 , т.е. энтропия при давлении р =1,01·10 5 Па (1 атм); стандартная энтропия химической реакции т.е. разница стандартных энтропий продуктов и реагентов; парциальная молярная энтропия компонента многокомпонентной системы .

Для расчета химических равновесий применяют формулу:

где К - константа равновесия , и - соответственно стандартные энергия Гиббса , энтальпия и энтропия реакции; R -газовая постоянная.

Определение понятия энтропия для неравновесной системы опирается на представление о локальном термодинамическом равновесии. Локальное равновесие подразумевает выполнение уравнения (3) для малых объемов неравновесной в целом системы (см. Термодинамика необратимых процессов ). При необратимых процессах в системе может осуществляться производство (возникновение) энтропии . Полный дифференциал энтропии определяется в этом случае неравенством Карно-Клаузиуса:

где dS i > 0 - дифференциал энтропии , не связанный с потоком тепла а обусловленный производством энтропии за счет необратимых процессов в системе (диффузии . теплопроводности , химических реакций и т.п.). Локальное производство энтропии (t - время) представляется в виде суммы произведений обобщенных термодинамических сил X i на обобщенные термодинамические потоки J i :

Производство энтропии за счет, например, диффузии компонента i обусловлено силой и потоком вещества J ; производство энтропии за счет химической реакции - силой Х=А/Т , где А -химическое сродство, и потоком J , равным скорости реакции. В статистической термодинамике энтропия изолирированной системы определяется соотношением: где k - постоянная Больцмана . - термодинамический вес состояния, равный числу возможных квантовых состояний системы с заданными значениями энергии, объема, числа частиц. Равновесное состояние системы отвечает равенству заселенностей единичных (невырожденных) квантовых состояний. Возрастание энтропии при необратимых процессах связано с установлением более вероятного распределения заданной энергии системы по отдельным подсистемам. Обобщенное статистическое определение энтропии , относящееся и к неизолированным системам, связывает энтропию с вероятностями различных микросостояний следующим образом:

где w i - вероятность i -го состояния.

Абсолютную энтропию химического соединения определяют экспериментально, главным образом калориметрическим методом, исходя из соотношения:

Использование второго начала позволяет определять энтропию химических реакций по экспериментальным данным (метод электродвижущих сил, метод давления пара и др.). Возможен расчет энтропии химических соединений методами статистической термодинамики, исходя из молекулярных постоянных, молекулярной массы, геометрии молекулы, частоты нормальных колебаний. Такой подход успешно осуществляется для идеальных газов. Для конденсированных фаз статистический расчет дает значительно меньшую точность и проводится в ограниченном числе случаев; в последние годы в этой области достигнуты значительные успехи.


Похожая информация.


Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная теплота сгорания топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.

Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m∙g∙h, где m – масса груза, g≈10 м/с² ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р∙t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз∙100%=(m∙g∙h)/(Р∙t) ∙100%=%=(800∙10∙3,6)/(3200∙10) ∙100%=90%.

Видео по теме

Источники:

  • как определить кпд

КПД (коэффициент полезного действия) – безразмерная величина, характеризующая эффективность работы. Работа есть сила, влияющая на процесс в течение некоторого времени. На действие силы затрачивается энергия. Энергия вкладывается в силу, сила вкладывается в работу, работа характеризуется результативностью.

Инструкция

Расчет КПД с определения энергии, потраченной непосредственно для достижения результата. Она может быть выражена в единицах, необходимых для достижения результата энергии, силы, мощности.
Чтобы не ошибиться, полезно держать в уме следующую схему. Простейшая включает в себя элемента: «рабочий », источник энергии, органы управления, пути и элементы проведения и преобразования энергии. Энергия, потраченная на достижение результата – это энергия, затраченная только «рабочим инструментом».

Далее вы определяете энергию, реально потраченную всей системой в процессе достижения результата. То есть не только «рабочим инструментом», но и органами управления, преобразователями энергии, а также к затратам следует отнести энергию, рассеянную в путях проведения энергии.

И далее вы подсчитываете коэффициент полезного действия по формуле:
К.П.Д. = (А / В)*100%, где
А – энергия, необходимая на достижение результата
В – энергия, реально затраченная системой на достижение результатов.Например: на проведение электроинструментальных работ было потрачено 100 кВт, при этом вся энергосистема цеха за это время потребила 120 кВт. КПД системы (энергосистемы цеха) в этом случае будет равен 100 кВт / 120 кВт = 0.83*100% = 83%.

Видео по теме

Обратите внимание

Часто понятие КПД применяют, оценивая отношение запланированных расходов энергии и реально потраченных. Например, соотношение запланированных объемов работ (или времени, необходимого для выполнения работы) к реально произведенным работам и потраченному времени. Здесь следует быть предельно внимательным. Например, запланировали затратить на работы 200 кВт, а затратили 100 кВт. Или запланировали произвести работы за 1 час, а затратили 0.5 часа; в обоих случаях КПД получается 200%, что невозможно. На самом деле в таких случаях имеет место, как говорят экономисты, «стахановский синдром», то есть сознательное занижение плана по отношению к реально необходимым затратам.

Полезный совет

1. Затраты энергии вы должны оценивать в одних и тех же единицах.

2. Затраченная всей системой энергия не может быть меньше потраченной непосредственно на достижение результата, то есть КПД не может быть больше 100%.

Источники:

  • как посчитать энергии

Совет 3: Как рассчитать эффективность танка в игре World of Tanks

Рейтинг эффективности танка или его КПД – один из комплексных показателей игрового мастерства. Его учитывают при приеме в топовые кланы, в киберспортивные команды, в роты. Формула расчета довольно сложна, поэтому игроки пользуются различными онлайн-калькуляторами.

Формула расчета

Одна из первых формул расчета выглядела так:
R=K x (350 – 20 x L) + Ddmg x (0,2 + 1,5 / L) + S x 200 + Ddef x 150 + C x 150

Сама формула приведена на картинке. В этой формуле имеются следующие переменные:
- R – боевая эффективность игрока;
- К – среднее количество уничтоженных танков (общее количество фрагов, деленное на общее количество боев):
- L – средний уровень танка;
- S – среднее количество обнаруженных танков;
- Ddmg – среднее количество нанесенного урона за бой;
- Ddef – среднее количество очков защиты базы;
- С – среднее количество очков захвата базы.

Значение полученных цифр:
- менее 600 – плохой игрок; такой КПД имеют около 6% всех игроков;
- от 600 до 900 – игрок ниже среднего; такой КПД имеют 25% всех игроков;
- от 900 до 1200 – средний игрок; такую эффективность имеют 43% игроков;
- от 1200 и выше – сильный игрок; таких игроков около 25%;
- свыше 1800 – уникальный игрок; таких не более 1%.

Американские игроки используют свою формулу WN6, выглядящую так:
wn6=(1240 – 1040 / (MIN (TIER,6)) ^ 0.164) x FRAGS + DAMAGE x 530 / (184 x e ^ (0.24 x TIER) + 130) + SPOT x 125 + MIN(DEF,2.2) x 100 + ((185 / (0.17+ e ^ ((WINRATE - 35) x 0.134))) - 500) x 0.45 + (6-MIN(TIER,6)) x 60

В этой формуле:
MIN (TIER,6) – средний уровень танка игрока, если он больше 6, используется значение 6
FRAGS – среднее количество уничтоженных танков
TIER – средний уровень танков игрока
DAMAGE – средний урон в бою
MIN (DEF,2,2) – среднее количество сбитых очков захвата базы, если значение больше 2,2 используется 2,2
WINRATE – общий процент побед

Как видно, в этой формуле не учитываются очки захвата базы, количество фрагов на низкоуровневой технике, процент побед и влияние начального засвета на рейтинге сказываются не очень сильно.

Компания Wargeiming ввела в обновлении показатель личного рейтинга эффективности игрока, который рассчитывается по более сложной формуле, учитывающей все возможные статистические показатели.

Как повысить эффективность

Из формулы Кх(350-20хL) видно, что чем выше уровень танка, тем меньшее количество очков эффективности получается за уничтожение танков, зато большее за нанесение урона. Поэтому, играя на низкоуровневой технике, старайтесь брать больше фрагов. На высокоуровневой – наносить больше урона (дамага). Количество очков полученных или сбитых очков захвата базы на рейтинг влияют несильно, причем за сбитые очки захвата очков КПД начисляется больше, чем за полученные очки захвата базы.

Поэтому большинство игроков улучшают свою статистику, играя на низших уровней, в так называемой песочнице. Во-первых, большинство игроков на низших уровнях – новички, не имеющие навыков, не использующие прокачанный экипаж с умениями и навыками, не использующие дополнительное оборудование, не знающие преимуществ и недостатков того или иного танка.

Независимо от того, на какой технике играете, старайтесь сбивать как можно большее количество очков захвата базы. Взводные бои сильно повышают рейтинг эффективности, так как игроки во взводе действуют скоординировано и чаще добиваются победы.

Термин «КПД» - это аббревиатура, образованная от словосочетания «коэффициент полезного действия». В самом общем виде он представляет собой соотношение затраченных ресурсов и результата выполненной с их использованием работы.

КПД

Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q - объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

КПД двигателя

Двигатель внутреннего сгорания (ДВС), представляющий собой один из ключевых компонентов механизма современного автомобиля, также представляет собой вариант системы, основанной на использовании ресурса - бензина или дизельного топлива. Поэтому для нее можно рассчитать величину КПД.

Несмотря на все технические достижения автомобильной промышленности, стандартный КПД ДВС остается достаточно низким: в зависимости от использованных при конструировании двигателя технологий он может составлять от 25% до 60%. Это связано с тем, что работа такого двигателя сопряжена со значительными потерями энергии.

Так, наибольшие потери эффективности работы ДВС приходятся на работу системы охлаждения, которая забирает до 40% энергии, выработанной двигателем. Значительная часть энергии - до 25% - теряется в процессе отведения отработанных газов, то есть попросту уносится в атмосферу. Наконец, примерно 10% энергии, вырабатываемой двигателем, уходит на преодоление трения между различными деталями ДВС.

Поэтому технологи и инженеры, занятые в автомобильной промышленности, прилагают значительные усилия для повышения КПД двигателей путем сокращения потерь по всем перечисленным статьям. Так, основное направление конструкторских разработок, направленное на уменьшение потерь, касающихся работы системы охлаждения, связано с попытками уменьшить размер поверхностей, через которые происходит теплоотдача. Уменьшение потерь в процессе газообмена производится преимущественно с использованием системы турбонаддува, а снижение потерь, связанных с трением, - посредством применения более технологичных и современных материалов при конструировании двигателя. Как утверждают специалисты, применение этих и других технологий способно поднять КПД ДВС до уровня 80% и выше.

Видео по теме

Источники:

  • О ДВС, его резервах и перспективах развития глазами специалиста

«Физика - 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели - устройства, способные совершать работу. Большая часть двигателей на Земле - это тепловые двигатели .

Тепловые двигатели - это устройства, превращающие внутреннюю энергию топлива в механическую работу.


Принцип действия тепловых двигателей.


Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя - сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя .


Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 , которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара - конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 , совершает работу А" и передаёт холодильнику количество теплоты Q 2 < Q 1 .

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т 1 . Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл - это ряд процессов, в результате которых система возвращается в начальное состояние.


Коэффициент полезного действия (КПД) теплового двигателя.


Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А" = Q 1 - |Q 2 | , (13.15)

где Q 1 - количество теплоты, полученной от нагревателя, a Q2 - количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А", совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η < 1.


Максимальное значение КПД тепловых двигателей.


Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796-1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т 1 , при этом он получает количество теплоты Q 1 .

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т 2 . После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q 2 , сжимаясь до объёма V 4 < V 1 . Затем сосуд снова теплоизолируют, газ сжимается адиабатно до объёма V 1 и возвращается в первоначальное состояние. Для КПД этой машины было получено следующее выражение:

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 - 800 К и Т 2 - 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД - около 44% - имеют двигатели Дизеля.


Охрана окружающей среды.


Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

КПД теплового двигателя. Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

где - теплота, полученная от нагревателя, - теплота, отданная холодильнику.

Коэффициентом полезного действия теплового двигателя называют отношение работы совершаемой двигателем, к количеству теплоты полученному от нагревателя:

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то во всех случаях

Максимальное значение КПД тепловых двигателей. Французский инженер и ученый Сади Карно (1796 1832) в труде «Размышление о движущей силе огня» (1824) поставил цель: выяснить, при каких условиях работа теплового двигателя будет наиболее эффективной, т. е. при каких условиях двигатель будет иметь максимальный КПД.

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он вычислил КПД этой машины, работающей с нагревателем температуры и холодильником температуры

Главное значение этой формулы состоит в том, как доказал Карно, опираясь на второй закон термодинамики, что любая реальная тепловая машина, работающая с нагревателем температуры и холодильником температуры не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

Формула (4.18) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю,

Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: При этих температурах максимальное значение КПД равно:

Действительное же значение КПД из-за различного рода энергетических потерь равно:

Повышение КПД тепловых двигателей, приближение его к максимально возможному - важнейшая техническая задача.

Тепловые двигатели и охрана природы. Повсеместное применение тепловых двигателей с целью получения удобной для использования энергии в наибольшей степени, по сравнению со

всеми другими видами производственных процессов, связано с воздействием на окружающую среду.

Согласно второму закону термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле. Сейчас потребляемая мощность составляет около 1010 кВт. Когда эта мощность достигнет то средняя температура повысится заметным образом (примерно на один градус). Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня мирового океана.

Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Топки тепловых электростанций, двигатели внутреннего сгорания автомобилей и т. д. непрерывно выбрасывают в атмосферу вредные для растений, животных и человека вещества: сернистые соединения (при сгорании каменного угля), оксиды азота, углеводороды, оксид углерода (СО) и др. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена. На атомных электростанциях встает проблема захоронения опасных радиоактивных отходов.

Кроме того, применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара С увеличением мощностей электростанций резко возрастает потребность в воде. В 1980 г. в нашей стране для этих целей требовалось около воды, т. е. около 35% водоснабжения всех отраслей хозяйства.

Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Обсуждается возможность создания электромобилей, способных конкурировать с обычными, и возможность применения горючего без вредных веществ в отработанных газах, например в двигателях, работающих на смеси водорода с кислородом.

Целесообразно для экономии площади и водных ресурсов сооружать целые комплексы электростанций, в первую очередь атомных, с замкнутым циклом водоснабжения.

Другое направление прилагаемых усилий - это увеличение эффективности использования энергии, борьба за ее экономию.

Решение перечисленных выше проблем жизненно важно для человечества. И эти проблемы с максимальным успехом могут

быть решены в социалистическом обществе с плановым развитием экономики в масштабах страны. Но организация охраны окружающей среды требует усилий в масштабе земного шара.

1. Какие процессы называются необратимыми? 2. Назовите наиболее типичные необратимые процессы. 3. Приведите примеры необратимых процессов, не упомянутых в тексте. 4. Сформулируйте второй закон термодинамики. 5. Если бы реки потекли вспять, означало бы это нарушение закона сохранения энергии? 6. Какое устройство называют тепловым двигателем? 7. Какова роль нагревателя, холодильника и рабочего тела теплового двигателя? 8. Почему в тепловых двигателях нельзя использовать в качестве источника энергии внутреннюю энергию океана? 9. Что называется коэффициентом полезного действия теплового двигателя?

10. Чему равно максимально возможное значение коэффициента полезного действия теплового двигателя?

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала …


Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

– это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Если сказать простым языком, то это преобразование термической или тепловой энергии, которая появляется при сгорании топливной смеси (воздух и бензин) в механическую. Нужно отметить что такое уже бывало, например у паровых силовых установок — также топливо под воздействием температуры толкало поршни агрегатов. Однако там установки были в разы больше, да и само топливо было твердое (обычно уголь или дрова), что затрудняло его перевозку и эксплуатацию, постоянно нужно было «поддавать» в печь лопатами. Моторы внутреннего сгорания намного компактнее и легче «паровых», да и топливо намного проще хранить и перевозить.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность . Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потер и . Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери . НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа. Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора. Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал — все это делает дизельный вариант чемпионом по КПД.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного , сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению , есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

Поделиться